A listing of all my recent publications, links to download them and the associated data is below. You can also see my work on ORCID:

Bell B.A., Fletcher W.J., Seddon A.W.R., Wogelius R.A., Ryan P. and Ilmen R. (2018). UV-B-absorbing compounds in modern Cedrus atlantica pollen: The potential for a summer UV-B proxy for Northwest Africa. The Holocene.

Abstract: Sporopollenin is a complex biopolymer which is the main component of the pollen grain exine and is partly composed of the aromatic compounds para-coumaric acid (pCA) and ferulic acid (FA). These compounds absorb ultraviolet-B radiation (UV-B, 280–315 nm), and their abundance in pollen and spores has been shown to increase in response to increased UV-B flux. Here, we show that the relative abundance of UV-B-absorbing compounds (UACs) measured using Fourier Transform Infrared Spectrometry (FTIR) in modern pollen of autumn-pollinating Cedrus atlantica trees increases in response to summer UV-B flux. This relationship was observed in native Moroccan samples (r2 = 0.84, p < 0.0001), but not across a larger environmental gradient including non-Moroccan samples (r2 = 0.00, p = 0.99). For non-Moroccan samples of known provenance, the abundance of UACs is similar to the abundance of UACs found in samples from their place of origin. The FTIR spectra of these samples also closely resemble the FTIR spectra of samples from their place of origin. This unexpected finding suggests there could be a heritable component to UAC production possibly associated with epigenetic memory, an important adaptive mechanism in conifers. Our results indicate that the relative abundance of UACs in Cedrus atlantica pollen could be used as a proxy to reconstruct historic summer UV-B flux in Northwest Africa during at least the Holocene and Late Glacial period while also highlighting how UV-B proxies should be established using pollen samples from specimens growing in their native range or environment.

Availability: Open Access

Data: Associated research data is available open access with the paper. The data can also be accessed for free from Mendeley Data.

DOI: 10.1177/0959683618777072

Bell B.A., Bishop T.H., Fletcher W.J., Ryan P. and Ilmen R. (2017). Cedrus atlantica pollen morphology and investigation of grain size variability using laser diffraction granulometry. Palynology. 1–15.

Abstract: The morphology and size variability of pollen grains of Cedrus atlantica were investigated using a novel approach employing laser diffraction granulometry. We provide new insights into size variability and present high-quality light microscopy (LM) and scanning electron microscopy (SEM) imagery of Cedrus atlantica pollen. Grains have an average size of 59.1 ± 4.0 µm, measured on millions of grains from 91 samples. Analysis showed there is high variability of grain size within individual samples, although variability between samples is not significant. We found no significant relationships between grain size and climate (including temperature, precipitation and aridity), and suggest that grain size of fossil Cedrus pollen would not be a good proxy for climate reconstruction. Grain size may be influenced by a number of complex factors such as genome size or adaptations to support wind pollination, while variability within individual samples may result from the irregular development of pollen. The laser diffraction method produced repeatable, robust measurements on millions of pollen grains which are highly correlated with measurements taken using LM (r = 0.91, p = 0.002). Where grain size information is crucial for pollen identification, for developing isolation techniques for geochemical analysis, for investigating climatic and environmental influence, or for investigating links between genomes and grain size, particle size analysis by laser diffraction provides a reproducible and robust method for quickly determining pollen grain size on many samples.

Availability: Open Access

Data: All associated research data is available open access with the paper. High resolution photographs of pollen (SEM and LM) can be found on Mendeley Data.

DOI: 10.1080/01916122.2017.1356760

Bell B.A., Fletcher W.J., Ryan P., Grant H. and Ilmen R. (2017). Stable carbon isotope analysis of Cedrus atlantica pollen as an indicator of moisture availability. Review of Palaeobotany and Palynology. 244, 128-139.

Abstract: Stable carbon isotope analysis of pollen provides potential for reconstruction of past moisture availability in the environment on longer time-scales compared to isotope analysis of plant tissue. Here we show that the carbon isotopic compositions (δ13C) of pollen, sporopollenin, leaf and stem tissues of Cedrus atlantica are strongly related. Untreated pollen δ13C has a significant linear relationship with sporopollenin δ13C (r2 = 0.97, p < 0.0001) which is relatively depleted in 13C by an average 1.5‰. Carbon isotope discrimination (Δ13C) by sporopollenin (derived from pollen δ13C values) is related to mean annual (r2 = 0.54, p < 0.001) and summer precipitation (r2 = 0.63, p < 0.0001). A 100 mm increase in mean annual precipitation results in sporopollenin Δ13C increasing by 0.52‰, or by 1.4‰ per 100 mm summer precipitation. There is a stronger relationship between sporopollenin Δ13C and long-term annual scPDSI (r2 = 0.86, p < 0.0001) and summer scPDSI (r2 = 0.86, p < 0.001) aridity indexes, with reduced Δ13C as aridity increases. These relationships suggest that stable carbon isotope analysis of C. atlantica fossil pollen could be used as a quantitative proxy for the reconstruction of summer moisture availability in Northwest Africa.

Availability: Open Access

Data: All associated research data is available open access with the paper.

DOI: 10.1016/j.revpalbo.2017.04.008

Bell B.A. and Fletcher W.J. (2016). Modern surface pollen assemblages from the Middle and High Atlas, Morocco: insights into pollen representation and transport. Grana. 55(4), 286–301.

Abstract: Thirty-three modern surface samples were collected in the environmentally and climatologically contrasting regions of the Middle and High Atlas Mountains, Morocco. Samples representing forest and steppe montane environments (1935–2760 m above sea level) are clustered around study sites at Lake Tislit (High Atlas, semi-arid oro-Mediterranean bioclime) and Lake Sidi Ali and Michliffen (Middle Atlas, sub-humid montane Mediterranean bioclime). Good discrimination between regional pollen spectra is evident, with Middle Atlas samples reflecting higher arboreal cover (Cedrus and evergreen Quercus) and High Atlas samples with high abundances of non-arboreal taxa, including Artemisia and Fabaceae. These four taxa (Cedrus, evergreen Quercus, Artemisia and Fabaceae) are furthermore shown to be reliable indicators of local source vegetation within a 100 m2 quadrat, taking into account threshold abundances of 7%, 20%, 4% and 10%, respectively. Deciduous Quercus, Olea and Phillyrea show long-distance pollen dispersal across both regions, contributing to non-trivial arboreal pollen (AP) values of up to 35% (typically 20–30%) in the High Atlas spectra. In the Middle Atlas, AP values of 40 to 50% occur in open sampling locations and > 60% under forest canopy cover. These insights should be taken into account when interpreting ancient pollen spectra from regional lakes and bogs for palaeoenvironmental reconstruction.

Availability: Subscription to the journal. Please email me if you would like a copy.

Data: All associated research data is available with the paper. Data is also freely available from Mendeley Data

DOI: 10.1080/00173134.2015.1108996